Multi-Camera 3D Fusion
with BlenDR

Joon Ha Kim
20180897

Contents

* Revisit Project Progress

* Multi-Fusion BlenDR System Design
* Progress Update

* Remaining Work

Project Progress Revisited

Progress from March to April 2024

Project Details

» Goal: Fuse multi-view point clouds to transmit (using BlenDR) a
dense point cloud for improved spatial and temporal consistency

« Key Terms: Master/Slave Camera, Intrinsic/Extrinsic Calibration

[1] -
Master RGBD Camera B - “ ‘

Slave RGBD Camera Depth to Color Camera Transform Point Cloud Formation Camera-to-Camera Alignment
(Intrinsic + Extrinsic) using Intrinsic Calib. using Extrinsic Calib.
BlenDR

Sender Side Receiver Side

Summary of Fusion Process

% —

1. Retrieve external calibration data through checkerboard i con using checkhoard siave and masten
2. Retrieve internal calibration to make point cloud from each view

3. Use external calibration to transform the slave point cloud (Stereo Calibration)
4. Use ICP Algorithm (in Appendix) to create a more accurate fusion of two pointclouds

Colorized Point Cloud Reconstruction (Stereo Calib. + ICP) 5

|CP Ablation Study

Point Cloud Reconstruction (No ICP) Point Cloud Reconstruction (With ICP)

System Design

Master
- Post Process +
o :[] PECUULCACSICI G 2. Send depth+rgh frame Point Cloud
. Calibration Generation

Color-to-Color 1. Send calibration data Stereo Calibration ICP lterations
Calibration ,<

2. Send depth+rgb frame

A 4

)

Poor ICP results
- Poor User Experience
- Notrealtime

Sender Receiver

System Design

Master

Post Process +

o :[] Depth to Color 2. Send depth+rgb frame

Point Cloud
Generation & |

Calibration

L]

g

Stereo Calibration

ICP lterations
Extrinsic 1. Send calibration and ICP transf. data

Calibration

2. Send depth+rgb frame |

Slave

Sender Receiver

Progress Update

Progress from May to July 2024

Existing Problems in Current System

1. Problems caused by Fusion:

» Problem#1: Some streams are randomly dropped (four streams needed but only two are live)
» Problem#1.5: Fusion adds significant latency (especially for pointcloud generation)

2. Problems Persistent in BlenDR:
» Problem#2: Flying pixels exist — poor appearance despite good RMSE

System Design

Master

L) L)
D D

o Depth to Color 2. Send depth+rgb frame
:[] Calibration

Point Cloud
Generation)

e

Stereo Calibration

L]

ICP lterations
Extrinsic
Calibration

2. Send depth+rgb frame |

Slave

Sender Receiver

11

Problem#1: Dropping Streams

Two streams bein

cHIBELHT BROLR

being recognized

Accepted: 6

stream 2 H264 2.68 Mb/s 1920x1080 0 0 Kb/s

Id State Address Flash version
1224 publishing 143.248.57.176 FMLE/3.0 (compatible; Lavf57.83
1221 playing 143.248.57.176 LNX 90,124,2

T98MB 798MB 529 Mb/s 5.3 Mb/s

Page URL SWF URL Dropped Timestamp A-V Time

0
0

378MB 3.78MB 2.68 Mb/s 2.68 Mb/s a

4267 -4267 1ls
4267 -4267 11s

stream 2 H264 2.61 Mb/s 1920x1080 0 0 Kb/s

Id State Address Flash version
1225 publishing 143.248.57.176 FMLE/3.0 (compatible; Lavf57.83
1220 playing 143.248.57.176 LNX90,124,2

Page URL SWF URL Dropped Timestamp A-V Time

0
0

419MB 4.19MB 2.61 Mb/s 2.61 Mb/s g

4267 -4267 1ls
4267 -4267 11s

Solution: Thread Scheduling

Accepted: 14 ---.---- 3231 MB 3231MB 0Kb/s 0Kbis 14h 52m 26s
stream 2 H264 OKb/s 1920x1080 0O 0 Kb/s 23MB 23MB OKbs OKbs active 8s
Id State Address Flash version Page URL SWF URL Dropped Timestamp A-V Time 2 inalab.net:1936)slave_rgblrgb,_stream na - rabirgb_stream
1235 playing 143.24857.176 LNX 90,1242 0 2400 2400 8s
1231 publishing 143.24857.176 FMLE/3.0 (compatible; Lavf57.83 0 2400 2400 8s
reb stream 2 H264 OKb/s 640x360 0 0 Kb/s 260KB 269KB O0Kbis OKbs active 8s
Id State Address Flash version Page URL SWF URL Dropped Timestamp A-V Time
1236 playing 143.248.57.176 LNX 90,1242 0 2367 2367 8s
1232 publishing 143.248.57.176 FMLE/3 0 (compatible; Lav{57.83 0 2367 2367 8s

rgb_stream 2 H264 O0Kb/s 640x360 O 0 Kb/s 276 KB 276 KB 0Kb/s 0Kb/s active 8s
Id State Address Flash version Page URL SWF URL Dropped Timestamp A-V Time
1238 playing 143.248.57.176 LNX 90,1242 0 2433 -2433 8s

1234 publishing 143.248.57.176 FMLE/3.0 (compatible; Lav{57.83 0 2433 -2433 8s

stream 2 H264 O0Kb/s 1920x1080 0 0 Kb/s 226 MB 226 MB O0Kb/s 0Kb/s active 8s
Id State Address Flash version Page URL SWF URL Dropped Timestamp A-V Time
1237 playing 143.248.57.176 LNX 90,1242 0 2400 -2400 8s

1233 publishing 143.248 57.176 FMLE/3.0 (compatible; Lavf57.83 0 2400 -2400 8s

james — candipig@watermelon2: ~/blendr_fusionfbuild — ssh candipig@watermelon2.inalab.net — 104x52

ble ir fus wild$ trea threads cbf 2 4 399 -II

Server Client

Problem#2: Flying Pixels

 Flying Pixel Effect Remains
» False depth values being added for continuity during depth-filling

Depth Filling

Solution: Corrected Post-Processing

e ldentified Problem: Threshold Mask is simply subtracted from the
received depth image

inverted_thr_result =1 - thr_result
depth_with_edges removed = decoded depth * inverted thr_result

 Additional Improvements:

 Post-processing using O3D (remove_statistical outlier) [5][6][7][8]
 Other options: remove_radius_outlier [8]

Ablation Study Results: Ours

Jf‘,‘.\

.s|[r rﬁ’:rl'i 'v;y'I""‘l xl

Ablation Study Results: Triangle Method

New Contributions to BlenDR

* End to End System that allows for multi-view fusion

« Effectively Remove Flying Pixels

« Comparison with GROOT (PointCloud Compression Method)
 Better ground-truth similarity compared to GROOT

* Results:
 Without Fusion: 03d HD (cm): 3.49 (groot), 19.40 (triangle), 2.28 (ours)

« With Fusion: 03d HD (cm): 4.53 (groot), 16.35 (triangle), 2.76 (ours)
 Potential addition: User experience studies

Additional Progress Done

 Latency minimization — Problem#1.5
 Thread scheduling and GPU Optimization (200ms cut down to 60ms)

* Modularization of code
* Fusion class made for easy usage
« Automatize recording, depth filling, depth packing, and point cloud generation

1 pace SingleCPU
namespace Fusion

{

static std::mutex main_pc_mutex; void PreparePointCloud(Fusion& fusion);
static std::mutex slave_pc_mutex; void CreatePointCloud(Fusion& fusion);

class Fusion
pace MultiThread

hessboard_square_length = 0.; J n 113 void CreatePointCloud(Fusion& fusion, int max_threads);

color_exposure_usec = 8000;

powerline_freq = 2;

e chessboard_pattern;

t depth_threshold = 15000;

calibration_timeout = 60.0; 11t to t after 6@s to get calibrated

pace GPU

void AllocMemory({Fusion& fusion);
id PreparePointCloud{Fusion& fusion);
void CreatePointCloud(Fusion& fusion);

le duration = std::numeric_limits<double>z:max(); //
size_t num_devices = 2;
vector<uint32_t> device indices{@};

Future Goal and Plan

» Conduct Experiments for Fusion Evaluation
Optimize code for real-time point cloud fusion
» Automate test benches for modularization and ease of use

JUL. 25 -AUG. 12

AUG. 13 * Plane to Texas

AUG — SEP. 12 » Paper Writing and Additional Data Retreival
SEP. 12 e NSDI ‘25 Paper Abstract Due
SEP. 19 « NSDI ‘25 Full Paper Due

21

Thank you.

Reference

https://scholarworks.calstate.edu/downloads/qr46r322x?locale=it

1]

2] https.//learn.microsoft.com/en-us/azure/kinect-dk/coordinate-systems
3] https://ieeexplore.ieee.org/document/7335499
4
5

https.//www.open3d.org/docs/release/tutorial/pipelines/colored pointcloud_registration.htmi
https.//www.mdpi.com/1424-8220/21/2/664

6] https://www.e-consystems.com/blog/camera/technology/what-is-flying-pixel-and-how-can-it-be-
mlthated In-3d-imaging-for-time-of-flight-cameras/

[7] https://www.mdpi.com/1424-8220/21/14/4628
[8] https.//www.open3d.org/docs/0.12.0/tutorial/geometry/pointcloud_outlier_removal.html

23

https://scholarworks.calstate.edu/downloads/qr46r322x?locale=it
https://learn.microsoft.com/en-us/azure/kinect-dk/coordinate-systems
https://ieeexplore.ieee.org/document/7335499
https://www.open3d.org/docs/release/tutorial/pipelines/colored_pointcloud_registration.html
https://www.mdpi.com/1424-8220/21/2/664
https://www.e-consystems.com/blog/camera/technology/what-is-flying-pixel-and-how-can-it-be-mitigated-in-3d-imaging-for-time-of-flight-cameras/
https://www.e-consystems.com/blog/camera/technology/what-is-flying-pixel-and-how-can-it-be-mitigated-in-3d-imaging-for-time-of-flight-cameras/
https://www.mdpi.com/1424-8220/21/14/4628
https://www.open3d.org/docs/0.12.0/tutorial/geometry/pointcloud_outlier_removal.html

Iterative Closest Point Algorithm (ICP)

« Summary of ICP (Colored)®!

1. Start with initial guess transformation, T°

2. For each point in point cloud, find correspondence
points, K, based on both spatial proximity and color
similarity.

—> Use Euclidean distance for difference

3. Calculate the transformatipn_ that mini_mizes a cost Point-to-Point ICP Point-to-Plane ICP
function (Least-Squares Fitting Function)

4. Apply this transformation to the source point cloud
and repeat until convergence or until maximum
number of iterations.

Function used:
open3d::pipelines::registration::RegistrationColoredICP|()

Colored ICP

24

	Slide 1: Multi-Camera 3D Fusion with BlenDR
	Slide 2: Contents
	Slide 3
	Slide 4: Project Details
	Slide 5: Summary of Fusion Process
	Slide 6: ICP Ablation Study
	Slide 7: System Design
	Slide 8: System Design
	Slide 9
	Slide 10: Existing Problems in Current System
	Slide 11: System Design
	Slide 12: Problem#1: Dropping Streams
	Slide 13: Solution: Thread Scheduling
	Slide 14
	Slide 15: Problem#2: Flying Pixels
	Slide 16: Solution: Corrected Post-Processing
	Slide 17: Ablation Study Results: Ours
	Slide 18: Ablation Study Results: Triangle Method
	Slide 19: New Contributions to BlenDR
	Slide 20: Additional Progress Done
	Slide 21: Future Goal and Plan
	Slide 22: Thank you.
	Slide 23: Reference
	Slide 24: Iterative Closest Point Algorithm (ICP)

