
Multi-Camera 3D Fusion
with BlenDR

Joon Ha Kim

20180897

Contents

• Revisit Project Progress

• Multi-Fusion BlenDR System Design

• Progress Update

• Remaining Work

2

Project Progress Revisited

Progress from March to April 2024

Project Details

• Goal: Fuse multi-view point clouds to transmit (using BlenDR) a
dense point cloud for improved spatial and temporal consistency

• Key Terms: Master/Slave Camera, Intrinsic/Extrinsic Calibration

4

Slave RGBD Camera

Master RGBD Camera

Point Cloud Formation

using Intrinsic Calib.

Camera-to-Camera Alignment

using Extrinsic Calib.

Depth to Color Camera Transform

(Intrinsic + Extrinsic)

[2]

[1]

Sender Side Receiver Side

BlenDR

Summary of Fusion Process

5

1. Retrieve external calibration data through checkerboard

2. Retrieve internal calibration to make point cloud from each view

3. Use external calibration to transform the slave point cloud (Stereo Calibration)

4. Use ICP Algorithm (in Appendix) to create a more accurate fusion of two pointclouds

Calibration using Checkboard (slave and master)

Colorized Point Cloud Reconstruction (Stereo Calib. + ICP)

ICP Ablation Study

6

Point Cloud Reconstruction (No ICP) Point Cloud Reconstruction (With ICP)

System Design

7

Depth to Color
Calibration

Depth to Color
Calibration

Post Process +
Point Cloud
Generation

Stereo Calibration
Color-to-Color

Calibration
ICP Iterations

𝑷𝑪𝒔𝒍𝒂𝒗𝒆 = 𝑷𝑪𝒔𝒍𝒂𝒗𝒆 × 𝑻𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝑻𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝑺𝒍𝒂𝒗𝒆−𝑴𝒂𝒔𝒕𝒆𝒓

Master

Slave

1. Send calibration data

2. Send depth+rgb frame

2. Send depth+rgb frame Post Process +
Point Cloud
Generation

Sender Receiver

- Poor ICP results
- Poor User Experience
- Not real time

System Design

8

Depth to Color
Calibration

Depth to Color
Calibration

Post Process +
Point Cloud
Generation

Stereo CalibrationExtrinsic
Calibration

ICP Iterations

𝑷𝑪𝒔𝒍𝒂𝒗𝒆 = 𝑷𝑪𝒔𝒍𝒂𝒗𝒆 × 𝑻𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝑻𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝑺𝒍𝒂𝒗𝒆−𝑴𝒂𝒔𝒕𝒆𝒓

Master

Slave

1. Send calibration and ICP transf. data

2. Send depth+rgb frame

2. Send depth+rgb frame
Post Process +

Point Cloud
Generation

Sender Receiver

Progress Update

Progress from May to July 2024

Existing Problems in Current System

1. Problems caused by Fusion:

➢Problem#1: Some streams are randomly dropped (four streams needed but only two are live)

➢Problem#1.5: Fusion adds significant latency (especially for pointcloud generation)

2. Problems Persistent in BlenDR:

➢Problem#2: Flying pixels exist – poor appearance despite good RMSE

System Design

11

Depth to Color
Calibration

Depth to Color
Calibration

Post Process +
Point Cloud
Generation

Stereo CalibrationExtrinsic
Calibration

ICP Iterations

𝑷𝑪𝒔𝒍𝒂𝒗𝒆 = 𝑷𝑪𝒔𝒍𝒂𝒗𝒆 × 𝑻𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝑻𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝑺𝒍𝒂𝒗𝒆−𝑴𝒂𝒔𝒕𝒆𝒓

Master

Slave

2. Send depth+rgb frame

2. Send depth+rgb frame
Post Process +

Point Cloud
Generation

Sender Receiver

Problem#1: Dropping Streams

Two streams being

correctly processedsome streams not

being recognized

Solution: Thread Scheduling

slave_uv (rgb)

slave_depth master_depth

master_uv (rgb)

Problem#2: Flying Pixels

• Flying Pixel Effect Remains
• False depth values being added for continuity during depth-filling

Depth Filling

Solution: Corrected Post-Processing

• Identified Problem: Threshold Mask is simply subtracted from the
received depth image

• Additional Improvements:
• Post-processing using O3D (remove_statistical_outlier) [5][6][7][8]

• Other options: remove_radius_outlier [8]

thr_result is matrix with 1 and 0 indicating edge
inverted_thr_result = 1 - thr_result
depth_with_edges_removed = decoded_depth * inverted_thr_result

Ablation Study Results: Ours

Ablation Study Results: Triangle Method

New Contributions to BlenDR

• End to End System that allows for multi-view fusion

• Effectively Remove Flying Pixels

• Comparison with GROOT (PointCloud Compression Method)
• Better ground-truth similarity compared to GROOT

• Results:
• Without Fusion: o3d HD (cm): 3.49 (groot), 19.40 (triangle), 2.28 (ours)

• With Fusion: o3d HD (cm): 4.53 (groot), 16.35 (triangle), 2.76 (ours)

• Potential addition: User experience studies

Additional Progress Done

• Latency minimization – Problem#1.5
• Thread scheduling and GPU Optimization (200ms cut down to 60ms)

• Modularization of code
• Fusion class made for easy usage

• Automatize recording, depth filling, depth packing, and point cloud generation

Future Goal and Plan

21

Date Task

JUL. 25 – AUG. 12

• Conduct Experiments for Fusion Evaluation

• Optimize code for real-time point cloud fusion

• Automate test benches for modularization and ease of use

AUG. 13 • Plane to Texas

AUG – SEP. 12 • Paper Writing and Additional Data Retreival

SEP. 12 • NSDI ‘25 Paper Abstract Due

SEP. 19 • NSDI ‘25 Full Paper Due

Thank you.

Reference
[1] https://scholarworks.calstate.edu/downloads/qr46r322x?locale=it

[2] https://learn.microsoft.com/en-us/azure/kinect-dk/coordinate-systems

[3] https://ieeexplore.ieee.org/document/7335499

[4] https://www.open3d.org/docs/release/tutorial/pipelines/colored_pointcloud_registration.html

[5] https://www.mdpi.com/1424-8220/21/2/664

[6] https://www.e-consystems.com/blog/camera/technology/what-is-flying-pixel-and-how-can-it-be-
mitigated-in-3d-imaging-for-time-of-flight-cameras/

[7] https://www.mdpi.com/1424-8220/21/14/4628

[8] https://www.open3d.org/docs/0.12.0/tutorial/geometry/pointcloud_outlier_removal.html

23

https://scholarworks.calstate.edu/downloads/qr46r322x?locale=it
https://learn.microsoft.com/en-us/azure/kinect-dk/coordinate-systems
https://ieeexplore.ieee.org/document/7335499
https://www.open3d.org/docs/release/tutorial/pipelines/colored_pointcloud_registration.html
https://www.mdpi.com/1424-8220/21/2/664
https://www.e-consystems.com/blog/camera/technology/what-is-flying-pixel-and-how-can-it-be-mitigated-in-3d-imaging-for-time-of-flight-cameras/
https://www.e-consystems.com/blog/camera/technology/what-is-flying-pixel-and-how-can-it-be-mitigated-in-3d-imaging-for-time-of-flight-cameras/
https://www.mdpi.com/1424-8220/21/14/4628
https://www.open3d.org/docs/0.12.0/tutorial/geometry/pointcloud_outlier_removal.html

Iterative Closest Point Algorithm (ICP)

• Summary of ICP (Colored)
1. Start with initial guess transformation, T0

2. For each point in point cloud, find correspondence
points, K, based on both spatial proximity and color
similarity.

→ Use Euclidean distance for difference

3. Calculate the transformation that minimizes a cost
function (Least-Squares Fitting Function)

4. Apply this transformation to the source point cloud
and repeat until convergence or until maximum
number of iterations.

Function used:
open3d::pipelines::registration::RegistrationColoredICP()

24

Point-to-Point ICP Point-to-Plane ICP

Colored ICP

[7]
[6]

A

B

	Slide 1: Multi-Camera 3D Fusion with BlenDR
	Slide 2: Contents
	Slide 3
	Slide 4: Project Details
	Slide 5: Summary of Fusion Process
	Slide 6: ICP Ablation Study
	Slide 7: System Design
	Slide 8: System Design
	Slide 9
	Slide 10: Existing Problems in Current System
	Slide 11: System Design
	Slide 12: Problem#1: Dropping Streams
	Slide 13: Solution: Thread Scheduling
	Slide 14
	Slide 15: Problem#2: Flying Pixels
	Slide 16: Solution: Corrected Post-Processing
	Slide 17: Ablation Study Results: Ours
	Slide 18: Ablation Study Results: Triangle Method
	Slide 19: New Contributions to BlenDR
	Slide 20: Additional Progress Done
	Slide 21: Future Goal and Plan
	Slide 22: Thank you.
	Slide 23: Reference
	Slide 24: Iterative Closest Point Algorithm (ICP)

