Multi-Camera 3D Fusion with BlenDR

Joon Ha Kim

20180897

Contents

- Project Goal and Definitions
- Previous Works (ICP)
- Attempts Made
 - Slave-to-Master View Transform
 - Virtual Camera (Pinhole)
- System Design
- Remaining Work

Project Details

- **Goal:** Fuse multi-view point clouds to transmit (using BlenDR) a dense point cloud for improved spatial and temporal consistency
- Key Terms: Master/Slave Camera, Intrinsic/Extrinsic Calibration

Receiver Side

Previous Works on Point Cloud Fusion

- Human Body Tracking
 - Human Limb Anchoring^{[3][4]}
 - FarFetch Fusion: Human Face Anchoring^[5]
- Calibration Board
 - *LiveScan3D*: Custom Calibration Markers^[6]
 - → Stereo Calibration:

use of cameras' *intrinsic* and *extrinsic* parameters derived from calibration markers

→ *ICP Refinement*: next slide...

General Trend: Calibration (either method above) + Refinement

Iterative Closest Point Algorithm (ICP)

- Summary of ICP (Colored)^[6]
 - 1. Start with initial guess transformation, T^0
 - 2. For each point in point cloud, find correspondence points, *K*, based on both spatial proximity and color similarity.

 \rightarrow Use Euclidean distance for difference

- 3. Calculate the transformation that minimizes a cost function (Least-Squares Fitting Function)
- 4. Apply this transformation to the source point cloud and repeat until convergence or until maximum number of iterations.

Function used: open3d::pipelines::registration::RegistrationColoredICP()

ICP Ablation Study

Point Cloud Reconstruction (No ICP)

Point Cloud Reconstruction (With ICP)

Attempt 1: Mapping Slave to Master Camera

- Summary of Attempt 1:
 - 1. Retrieve device to device color-to-color calibration using the checkerboard calibration scheme
 - 2. Create custom transformation from **slave depth** to **master color camera** coordinates

- 4. Apply color to the point cloud + ICP
- **Problem 1**: mapping **slave color** to *modified* slave depth
- **Problem 2:** final point cloud limited to master color perspective

Calibration using Checkboard (slave and master)

k4a::calibration::convert_2d_to_3d

Attempt 2: Virtual Camera (Pinhole)

- Summary of Attempt 2:
 - 1. Retrieve device to device color-to-color calibration using the checkerboard calibration scheme
 - 2. Create **slave and master point clouds** from respective intrinsic and extrinsic parameters
 - → Use *pinhole* function in Open3D
 - 3. Apply stereo transformation matrix to slave point cloud
 - 4. Refine results with ICP
- **Problem 1**: ICP does not converge even with stereo calibration
- **Problem 2:** Distortion present in point cloud created from pinhole

Final ICP result with same convergence criteria

System Design

Goal 1: Make independent point clouds for master and slave Goal 2: Avoid using pinhole that adds distortion

System Design

- Sender:
 - 1. Calibrate cameras using checkerboard
 - Notify receiver with calibration metrics (socket programming)
 - 2. Convert depth image to color perspective (main and slave)
 o Send {Main Depth, Main Color}, {Slave Depth, Slave Color} frames
 o 4 main streams encode using BlenDR
- Receiver:
 - 1. Receive frames from RTMP server (4 frames)
 - 2. Reconstruct point cloud using proposed method
 - \odot Stereo Calibration + ICP handled by receiver
 - Stereo + ICP latency cost incurred only once (initialization delay)

Yet to Deploy on BlenDR...

Design Results (Full Result)

Colorized Point Cloud Reconstruction (Stereo Calib. + ICP)

Future Goal and Plan

Date	Task
APR23 - APR30	 Continue finalizing RTMP pipeline (Receiver end) Create a full end-to-end demo
MAY01 –	 Deploy on WebRTC (for bitrate control) Optimize point cloud reconstruction for real-time purposes (30 FPS) CUDA Implementation of ICP Registration CUDA Implementation for colorizing Point Cloud
Areas of Improvement	 Fine-tune ICP Registration parameters to minimize discontuinities of planes and edges Try looking into NeRF (Neural Enhanced Radiance Field) trained with RGBD data for 360° point cloud generation/filling

Thank you.

Appendix

Algorithm 1 Colored point cloud alignment			
Input: Colored point cloud \mathbf{P} and \mathbf{Q} , initial transformation \mathbf{T}^0			
Output: Transformation \mathbf{T} that aligns \mathbf{Q} to \mathbf{P}			
1:	: Build point cloud pyramids $\{\mathbf{P}^l\}$ and $\{\mathbf{Q}^l\}$		
2: for $\mathbf{p} \in \mathbf{P}^l$ do			
3:	 Precompute d_p by minimizing (10) 		
4:	This defines function $C_{\mathbf{p}}$		
5:	$\mathbf{T} \leftarrow \mathbf{T}^{0}, L \leftarrow \max_{pyramid_level}$		
6:	for $l \in \{L, L - 1, \dots, 0\}$ do \triangleright From coarsest to finest		
7:	while not converged do		
8:	$\mathbf{r} \leftarrow 0, \mathbf{J}_{\mathbf{r}} \leftarrow 0$		
9:	Compute the correspondence set K		
10:	for $(\mathbf{p},\mathbf{q})\in\mathcal{K}$ do		
11:	Compute $r_C^{(\mathbf{p},\mathbf{q})}, r_G^{(\mathbf{p},\mathbf{q})}$ at T (Eq. 18,19)		
12:	Compute $\nabla r_C^{(\mathbf{p},\mathbf{q})}, \nabla r_G^{(\mathbf{p},\mathbf{q})}$ at T (Eq. 29,30)		
13:	Update r and J_r accordingly		
14:	Solve linear system 21 to get ξ		
15:	Update T using Equation 20, then map to $SE(3)$		
16:	Validate if \mathbf{T} aligns \mathbf{Q} to \mathbf{P}		

Reference

- [1] <u>https://scholarworks.calstate.edu/downloads/qr46r322x?locale=it</u>
- [2] https://learn.microsoft.com/en-us/azure/kinect-dk/coordinate-systems
- [3] <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269787/</u>
- [4] <u>https://www.mdpi.com/1424-8220/22/22/8900</u>
- [5] <u>https://dl.acm.org/doi/abs/10.1145/3570361.3592525</u>
- [6] https://ieeexplore.ieee.org/document/7335499
- [7] <u>https://www.open3d.org/docs/release/tutorial/pipelines/colored_pointcloud_registration.html</u>
- [8] <u>https://openaccess.thecvf.com/content_ICCV_2017/papers/Park_Colored_Point_Cloud_ICCV_2017_paper.pdf</u>